Timahoe North Project – Environmental Impact Assessment Report 160727 – EIAR – 2018.12.07 – F

Appendix 9-1

Carbon Calculation Worksheet

Timahoe North Solar PV Farm: Carbon Balance Calculation

1. Technology Lifecycle Emissions

	Value	Unit
Installed Capacity	106	MWdc
Global Irradiation	1,028	MWh/m2
Curtailment	4	%
Degradation	0.4	%
Operational life	35	years
Total output over lifetime - no curt.	2,904,699	MWh/a
Total output over lifetime - incl. curt	2,788,511	MWh/a
Solar PV farm lifecycle emissions	88.47	kg CO2/MWh

2. Additional System Cycling Emissions

	Value	Unit
Carbon emissions from natural gas	56.9	kg CO2/GJ
CCGT emissions at 54% design efficiency	379.3	kg CO2/MWh
CCGT efficiency at Min Stable Generation	48.6	%
Demand Following: 18hrs@53%; 6 hrs@MSG		
Average efficiency from demand following	51.90	%
CCGT emissions at 51.9% efficiency	394.7	kg CO2/MWh
CCGT efficiency at low wind	46	%
CCGT emissions at 46% efficiency	448.9	kg CO2/MWh
CCGT efficiency at high wind	44	%
CCGT emissions at 44% efficiency	464.9	kg CO2/MWh
Additional emissions from wind cycling	16.05	kg CO2/MWh

2. Total Additional Cycling Emissions

Lifespan	35	years
Annual output	2,788,511	MWh
Cycling emissions	16.05	kg CO2/MWh
Total emissions	44,745	tonnes CO2

year	35	
MW	2,788,511	
kg CO2/MW	16.05	

3. Additional Peatland Disturbance Emissions

	Value	Unit
Peat disturbed	63,400	m3
Oxidisation of Displaced Peat	9,208	t CO2
Change in peatland classification - module area	0	t CO2
Loss of Carbon Fixation by bog plants	471	t CO2
Change in peatland classification -		
construction area	-3,204	t CO2

4. Fossil Fuel Emissions Displaced

SEM mid-merit emissions	744.5	kg CO2/MWh
EU Fossil Fuel Comparator	658.8	kg CO2/MWh
'Demand Following' CCGT unit	394.7	kg CO2/MWh

3. Total Additional Peatland Disturbance Emissions

Total emissions

1. Total Technology Lifecycle emissions

Total emissions	255,350	tonnes CO2
Construction emissions	8,643	tCO2
Lifecycle emissions	88.47	kg CO2/MWh
Annual output	2,788,511	MWh
Lifespan	35	years

4. Carbon Balance

Solar PV Farm Lifetime Er	missions	
- technology	255,350	tCO2
- cycling	44,745	tCO2
- peat	6,475	tCO2
Total:	306,571	t CO2

Solar PV Farm Life	etime Savings	(t CO2)	Payback (yrs)
Against SEM mid-	merit	2,076,046	5.17
Against EU FFC		1,837,071	5.84
Against 'Demand	Following' CCGT	1,100,625	9.75

6,475	tonnes CO2

Assumptions Underlying the Analysis

For a displaced 'Demand Following' CCGT unit = 379.3 kg CO2/MWh

	Sources
Solar PV Farm Carbon Emissions	
Solar PV farm infrastructure lifecycle emissions - includes PV modules, mounting structures, inverters,	
substation, transportation, all civil works, operation and maintenance and also decommissioning	
Lifecycle emissions are taken as an average of solar PV module supplier embodied carbon data: = 88.47 kg	
System Cycling - additional emissions	
Carbon emissions from natural gas - from 'Energy in Ireland 1990-2014' = 56.9 t CO2/TJ	
CCGT Design efficiency: 54%	
Irish CCGT units on a system without intermittent wind would still operate in a 'load following' mode	
Average emissions from load-following CCGTS at high wind: 464.92 kg CO2/MWh; Average CCGT efficiency:	SEMO
Average emissions from load-following CCGTS at low wind: 448.87 kg CO2/MWh; Average CCGT efficiency:	SEMO
Additional emissions from cycling: 16.05 kg CO2/MWh	
Emissions from Peatland Disturbance	
Total volume of peat excavated for roads, inverters, substation etc = 63,400 m3	
The excavated peat is stock-piled onsite	
Assume that all areas excavated and construction areas have a carbon emission factor of zero t CO2/ha/a	
Assume peat stockpile area has an emission factor of 39.43 tCO2/ha/a to account for increased oxidation of	CARBAL FINAL REPORT; industrial
exposed peat.	cutaway peatlands
Assume that vegetation management is carried out in the location of the solar PV modules to prevent shading	
Fossil Fuel Emissions Displaced	
On the Irish Grid - taken as SEM Reference mid-merit plant (SEM/13/006) = 744.5 kg CO2/MWh	
In the EU Single Electricity Market - COM(2016)767 - the Fossil Fuel Comparator is 183 gCO2/MJ = 658.8 kg	Recast of RED; See Annex VI